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Seafood processing often removes morphological properties of seafood species that enable the
consumer to distinguish one type of organism from another. For this reason, species substitution is
the most common form of economic adulteration in the seafood industry. Visible and near-infrared
spectroscopy (Vis/NIR) has been used to detect and quantify species authenticity and adulteration
in crabmeat samples. Atlantic blue crabmeat was adulterated with blue swimmer crabmeat in 10%
increments. Water absorption bands dominated the main features in the crabmeat spectra, with a
decrease in sample absorbance with increasing adulteration percentage. Several data pretreatments,
i.e., moving average, combing, first and second derivatives, and multiplicative scatter correction, in
addition to the raw data, were investigated for prediction and quantitative data analysis using partial
least-squares. In addition, quantitative analysis was done using the full spectrum and a sequential
approach in which 50 wavelengths were added sequentially to determine a new model and find an
optimal solution. The results suggest that Vis/NIR spectroscopy is a suitable technology that can be
applied to detect and quantify species authenticity and adulteration in crabmeat.
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INTRODUCTION

The issue of food authenticity has been around since the early
1800s and is mainly related to improper labeling and economic
adulteration (EA), i.e., the substitution, in part or whole, of
cheaper and inferior food products for high-cost foods in order
to defraud the consumer (1). An authentic food, defined as a
food that “conforms to the description provided by the producer
or processor,” includes the process history of a product or
ingredient, its geographic region of origin, or the species or
variety of the ingredient (2). Although rarely a health hazard,
EA is driven by the demand for higher value goods, global
trading, and price fluctuations, factors that provide an op-
portunity for illegal profits. For these reasons, food processing
industries and regulatory agencies have pushed for analytical
methods to confirm food product authenticity (3).

The development of worldwide high-seas fishing vessels, the
improvement in food processing and storage, and the establish-
ment of fishing industries in developing countries have increased
the variety of seafood species, both fresh and processed,
currently available in markets (4). These factors have contributed
to an increase in total catches from fisheries and, thus, seafood
consumption worldwide. The demand for a year-round seafood
supply, however, has negatively impacted the number of some
valued and appreciated species due to exploitation. Therefore,

some have turned to illegal practices in order to meet the high
demand for these valued and appreciated seafood products.

Because most consumers are not very familiar with the
taxonomical and morphological characteristics of seafood spe-
cies, such as skin pattern, body appearance and size, eyes, shape,
and number of fins, they are subject to being defrauded by
buying a seafood product that is not what it claims to be (5). In
addition, the processing of seafood products, which often
requires the removal of significant morphological characteristics,
hinders species recognition. Because of these reasons, species
substitution has become the main form of adulteration in the
seafood-processing industry.

Detection of food authenticity, by focusing on food adultera-
tion, has traditionally relied on wet chemistry analyses by
determining the amount of compounds in a food product and
comparison of the values obtained with known, i.e., previously
documented, values for authentic products (2). Early methods
for species identification have relied on using proteins as species
markers. The field of electrophoresis, for example, made it
possible to obtain water-soluble protein patterns, which have
become a reference method for species identification to dif-
ferentiate genetically related fish species (6). However, because
of protein denaturation at high temperatures, these techniques
are not effective in determining species authenticity for pro-
cessed seafood products (4). Additional disadvantages include
the large range of compounds needing quantification, discrep-
ancies in protein patterns among members of the same species,
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and time-consuming and expensive wet chemistry techniques.
These drawbacks, plus the fact that food adulterers are applying
more sophisticated techniques to adulterate their food products,
have increased the application of suitable technologies into the
field of food adulteration and authenticity.

The need for fast, reliable, and on-line methods to detect
species authenticity and adulteration has increased interest in
the application of the use of spectroscopic research. Visible and
near-infrared spectroscopy (Vis/NIR) is a noninvasive and
nonspecific technique that has been used to measure spectra of
different types of foods (7). Vis/NIR spectroscopy can be used
to distinguish among biological samples through spectra de-
scribing the sample’s biological composition, such as fat,
protein, lipid, water, etc. In addition, it has been used to identify
different species although research has focused on meat products
(8).

The aim of this paper was to investigate the application of
Vis/NIR spectroscopy to address the issue of species authenticity
and adulteration in crabmeat. The use of several spectral data
pretreatments, i.e., moving average smoothing, first and second
derivatives, combing, and multiplicative scatter correction
(MSC), was explored to determine the effects on model
performance. In addition, two spectral approaches were studied
to build the calibration models: a full spectrum and a sequential
spectrum in which 50 wavelengths were added sequentially to
the previous model to determine the best optimal solution.

MATERIALS AND METHODS

Sample Preparation.Six pounds of canned crabmeat (3 lbs. per
type of crab) was obtained from a local supermarket for two species
of crabs, Atlantic blue (Callinectes sapidus) and blue swimmer
(Portunus pelagicus), and stored at 4°C overnight. The imported blue
swimmer crabmeat was chosen as the adulterant due to its year-round
availability and reduced cost. In addition, it is the most prevalent
crabmeat being imported into the United States (9).

Prior to sample preparation and analysis, the crabmeat was tempered
individually to room temperature (25°C) in a water bath, pooled in a
separate clean container, and thoroughly mixed with gloved hands.
Samples represented authentic crabmeat species, i.e., Atlantic blue and
blue swimmer, and a range of adulterated samples (10-90%) containing
different amounts of both crab species in 10% increments according
to weight. The crabmeat ofC. sapidusandP. pelagicuswas weighed
individually and homogenized using a blender (5 s intervals) to obtain
a total sample weight of 70 g. Homogenized samples were then divided
into two equal parts, each consisting of 35 g, generating a total of ten
samples for each of the 11 classes, i.e., class 0, 100% Atlantic blue
(0% blue swimmer); class 1, 90% Atlantic blue (10% blue swimmer);
and so forth until class 10, 0% Atlantic blue (100% blue swimmer).
The 110 samples were placed in labeled polyethylene bags and stored
at room temperature (25°C) until spectral analysis.

Vis/NIR Spectroscopy Analysis.Absorbance spectra (400-2498
nm at 2 nm intervals) were recorded in log(1/R) units, for a total of
1050 wavelengths, using a NIRSystems 6500 spectrometer (FOSS
NIRSystems, Silver Springs, MD) equipped with a rectangular sample
cell. Crabmeat samples were scanned in random order at room
temperature (25°C), and the spectrum, an average of 32 scans, was
recorded per sample to obtain a total of 110 spectra. Spectral analysis,
model development, calibration, and validation were performed using
The Unscrambler, software version 7.6 (CAMO Software, Inc., OR).

Spectral Data Pretreatment Methods.Because spectral data often
contain noise and extra information irrelevant to the problem at hand,
an appropriate model is necessary to extract the relevant information
for the prediction of the response variable, i.e., adulteration percentage
in this study. Several spectral pretreatment methodssderivatives,
combing, smoothing, and MSCshave been used and compared in this
paper to assess the best pretreatment and regression model combination
for determining species authenticity.Table 1 shows the different data

pretreatments and parameters used in the convolution intervals for each
algorithm.

Derivatives.First and second derivatives were used to reduce peak
overlap and remove constant and linear baseline drift, respectively (7).
Differentiation was done using the Savitzky-Golay algorithm in which
a moving average was applied to the spectra prior to differentiation.
An appropriate window segment for the moving average was very
important; the wider the window segment was, the greater the noise
reduction although also the greater the distortion of the signal (10).
Five windows composed of 1, 5, 15, 30, and 50 consecutive wavelengths
were used to compute the moving average prior to obtaining the
polynomial approximation for differentiation.

Data Combing.Combing was used to choose a user-defined number
of data points at equal intervals from each spectrum for subsequent
data analysis (11). Five combing intervals (2, 4, 16, 32, and 64 points
wide) were chosen to examine the effect on model performance. Each
data set contained 525, 263, 66, 33, and 17 data points, respectively.

Smoothing.Smoothing modified the magnitude of absorption peaks
and shifted the position of asymmetric absorption bands (11). A moving
average was used to replace each wavelength spectral data with an
average of adjacent values. Four convolution intervals (none, 5, 15,
and 30 points wide), applied to each spectrum using a moving average,
were chosen to compare the effects on model predictability.

MSC. MSC compensated for additive (offset) and/or multiplicative
(amplification) effects in Vis/NIR spectroscopy and reduced the
likelihood that these effects were dominating factors in the spectral
data (7). Three types of corrections were investigated in this paper:
common offset (additive effects), common amplification (amplification
effects), and full MSC (additive and multiplication effects).

Model Development: Calibration and Validation. Multivariate
calibration related two data sets, X (containing the independent
variables, i.e., spectral data) and Y (containing the dependent variable,
i.e., adulteration percentage), via regression with the purpose of using
the model for prediction. Validation, on the other hand, was used to
test the model’s prediction ability on a new data set, which has not
been used in the model development.

For each model, the crabmeat samples were divided equally into a
training set (55 samples) for calibration and a testing set (55 samples)
for validation. Two different approaches were investigated in each data
pretreatment to determine, if any, which method produced optimal
models [i.e., lowest standard error of calibration (SEC) and standard
error of prediction (SEP)]. The full spectrum approach used the
complete wavelength range, i.e., 400-2498 nm (1050 data points). In
the sequential approach, a 100 nm window was added to the previous
consecutive spectrum window to determine a new model. In other
words, the first model was developed based on the 400-500 nm
wavelength range. The remaining models were developed by adding a
100 nm wavelength range at a time, i.e., 50 wavelengths at a time, so
the second model corresponded to 400-600 nm, the third corresponded
to 400-700 nm, etc., until model 20, which used the full spectral data
range, i.e., 400-2498 nm.

There has been much debate as to the importance of finding those
few wavelengths that contain significant information for optimal model
development, thus reducing the number of wavelengths, variables, and
model complexity. Recently, however, research has found the impor-
tance of combining some wavelengths, i.e., synergistic, although not
necessarily significant by themselves, to those containing problem-
dependent information, i.e., descriptive wavelengths, to improve model
performance (12). The spectral data range was broken down in this
sequential fashion in order to observe wavelength relevance on model

Table 1. Data Pretreatments and Associated Parameters

data pretreatment window segment or algorithm

first derivative 1, 5, 15, 30, 50
second derivative 1, 5, 15, 30, 50
combing 2, 4, 16, 32, 64
smoothing none, 5, 15, 30
MSC common offset, common

amplification, full MSC
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prediction and investigate synergistic and descriptive relationships
among consecutive wavelength regions.

Partial Least-Squares (PLS).PLS was used instead of principal
component regression because it focused on the dependent variables
and used fewer latent variables to reach an optimal solution (13). The
term latent variable, principal component (PC), or PLS loadings is often
used synonymously in the literature to define the features used to extract
the relevant information and reduce the dimensionality of the data. For
the purpose of this paper, the extracted features will be referred to as
PCs. The effects of the data pretreatment methods on the performance
of PLS calibration models were evaluated in terms of the SEC, the
SEP, and the corresponding coefficient of determination (r2).

RESULTS AND DISCUSSION

Spectra of Crabmeat Species.The absorbance spectra for
C. sapidusandP. pelagicuscrabmeat samples (Figure 1) are
dominated by water absorption bands at 970 (O-H bond
stretching and second water overtone), 1450 (O-H bond
stretching and first water overtone), and 1940 nm (O-H bond
stretching and bending). The water content of biological
samples, such as crabmeat, poses a limitation in the use of Vis/
NIR spectroscopy because water absorbs strongly and contrib-
utes to a significant amount of light scattering (14). In addition,
water absorption bands can interfere with the spectral features
of the chemical parameter of interest, such as an adulterant.
Overall, however, a higher absorbance is visible for samples
containing 100% Atlantic blue crabmeat, whereas the lowest
absorbance values represent samples containing 100% blue
swimmer crabmeat. The sample absorbance decreases at every
wavelength as the percentage of adulteration increases.

Determination of PCs in Model Development.PLS focuses
on the Y matrix (the expected values) to decompose the X
matrix (the spectral data). Usually, the first few PCs will describe
the majority of the variation found in Y; however, this does
not guarantee that these first PCs contain the problem-dependent
information needed to accurately predict the desired constituent,
i.e., adulteration level, in this study. PC analysis decomposes
the data along directions of maximum variances. Directions of
large variance in the first several components usually correspond
to structure, i.e., problem-dependent information, and the

directions of small variance in later components correspond
mainly to noise. If the full set of PCs is used, there is no clear
distinction between the structure part and the noise.

The number of PCs to use in the PLS model is very important
because too few components will generate an underfitted model,
i.e., fits loosely the data structure (15). Using too many, on the
other hand, generates an overfitted model, one which fits parts
of the noise of the calibration set, thus generating a low SEC
but performing poorly in the validation set. The optimum
number of PCs will then decompose the X matrix between the
structure and the noise. For this reason, evaluation of the
variance plots is needed to determine which PCs describe most
of the residual variance of the Y matrix in order to determine
the optimal number of PCs to use in the regression model.

Even though the calibration variance is a measure of the
model fit, i.e., how well the model fits the training data, it may
not be useful to rely on it solely to determine the optimal number
of PCs. To ensure that the model is able to describe and predict
new data, the validation variance must also be taken into
account.Figure 2 shows the residual calibration and validation
variances of the untreated data. Observation of both variances
indicates that the first minimum is visible using five PCs; hence,
for this particular model, the optimum number of PCs used was
five. The PCs for the remainder models were chosen similarly
by focusing on the Y-variance plot of the calibration and
validation data sets.

Quantification of Species Authenticity.Ideally, a correlation
must exist between the set of variables measured instrumentally
and the property to be estimated. This can be studied using a
correlogram, a tool used to determine wavelength importance
in terms of a given attribute (16). The correlogram describing
the correlation between the spectral range and adulteration
percentage is seen inFigure 3.

There is a high negative correlation (-0.95< R2 < -0.80)
in the visible range (400-800 nm), and it slowly decreases to
a plateau around zero correlation in the higher NIR wavelengths
(1900-2500 nm). It can be assumed that using the visible
wavelength range alone might be effective at detecting or
quantifying adulteration. However, the sequential approach

Figure 1. Average absorbance spectra of crabmeat samples. The top spectrum represents class 0 (100% Atlantic blue crabmeat), the bottom spectrum
represents class 10 (100% blue swimmer crabmeat), and classes 1−9 (10−90% adulteration) are sequentially from top to bottom.
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results, based on the visible range, do not yield the lowest SEC
and SEP values. Even though this demonstrates the futility of
using univariate methods for complex databases, it is a quick
way to potentially determine important wavelengths for the
prediction of EA of crabmeat.

Wavelength data can be classified into two categories: (i)
predictive, in which the information is useful for modeling the
relationship between the spectral data (X) and the response
variable (Y), and (ii) synergistic, in which the information
contained within the wavelengths does not improve the model
but adding them to descriptive wavelengths enhances the
model’s predictive ability (12). Interestingly, there is a slight
increase in the correlation coefficient at the 1400 nm wavelength
(R2 ) -0.3). Although small, this increase in correlation can
be attributed to the presence of either synergistic or descriptive
wavelengths in the 1300-1400 nm region.

The results, based on SEC and SEP, of all of the models of
the different data pretreatments were compared. The best model,
in terms of SEC and SEP, for each data pretreatment method
was then compared with the results of the untreated data

(Figures 4and5). The smoothing pretreatment did not improve
model performance when comparing the SEC and SEP values
to those gathered from the untreated data. Using the whole
spectrum, the best results of the smoothing, those gathered using
a 5-point moving average, generated an SEC and SEP of 5.45
and 5.85, respectively, whereas the untreated data generated 5.43
and 5.84. A 2*SEP is regarded as a 95% confidence interval in
spectral quantitative analysis (15,17). Therefore, these models
were able to detect adulteration using blue swimmer crabmeat
within (5.85% for the moving average and(5.84% for the
raw data. Similar results were generated using the sequential
spectrum approach.

Contrary to studies involving MSC, none of the methods
(common offset, common amplification, and full MSC) im-
proved model performance over the untreated data. This can
be attributed to the fact that MSC is usually performed on
samples that are not homogeneous and contain particles of
different sizes. Because the crabmeat samples were blended,
thus reducing the chances of light-scattering effects due to
particle size, it is possible that this data pretreatment actually

Figure 2. Residual variance of the calibration and validation data sets as a function of PLS components.

Figure 3. Correlogram showing the correlation (y-axis) between adulteration percentage and Vis/NIR spectral data (x-axis).
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increased the signal-to-noise ratio. The best SEC and SEP, 5.83
and 6.23, respectively, was gathered by using a common offset
MSC. Because these data pretreatments performed equally (for
smoothing) and worse (for MSC), further discussion of the
results will focus on the untreated data and the remaining data
pretreatment methods, i.e., first and second derivative and
combing (Table 2).

Figure 4 shows the SEC, in the sequential spectral approach,
of the remaining data pretreatment methods and the untreated
data across the sequential adding of spectra in 100 nm
increments. In general, the SEC of the models ranges from 4.00

(5-point second derivative of a model using the 500-2400 nm
range), to 8.0 (64-point combing at 500-600 and untreated data
at 500-2300). Choosing an appropriate data pretreatment is
problem-dependent and, as verified inFigure 4, depends on
the wavelength range used in the model calibration. If the
complete spectrum is used, both the 30-point first derivative
and the 5-point second derivative perform equally in terms of
SEC (5.64) and slightly higher than the untreated data SEC
(5.43). The lowest SEC (4.00) across the spectrum was
generated using a 5-point second derivative and a wavelength
range of 400-2400 nm. With the exception visible in the 2200-
2400 range, the untreated data generated a lower SEC than the
30-point first derivative data and equal to the 5-point second
derivative data in the 700-1300 and 2000-2200 ranges.

Upon closer inspection ofFigure 4, several regions are
distinguishable according to the SEC values. The SEC of the
untreated, first derivative, and second derivative data is initially
between 7.0 and 7.5 and slowly decreases as more wavelengths
are added sequentially to determine the next regression model.

Figure 4. SEC of the best model for each data pretreatment, i.e., 64-point combing (2), 30-point first derivative (9), 5-point second derivative (b), and
the untreated (]) data.

Figure 5. SEP of the best model for each data pretreatment, i.e., 64-point combing (2), 30-point first derivative (9), 5-point second derivative (b), and
the untreated (]) data.

Table 2. Optimal Convolution Intervals for Remaining Data
Pretreatments

data pretreatment optimal convolution interval

first derivative 30 points
second derivative 5 points
combing 64 points
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Models developed with wavelengths of two regions, i.e., 400-
1300 and 400-2200 nm, generate an SEC between 5.5 and 6.5
and 5.4 and 6.0, respectively. Models generated by including
1400-1900 nm produced an SEC between 4.8 and 5.8, and
those generated after including the 2200 nm region produced
varying SEC values (between 4.0 and 7.5).

It is interesting to note that the 64-point combing data
pretreatment, although considerably higher in the 500-1200 and
2000-2500 nm ranges, has a minimum SEC of 5.0 in the 1300-
1500 nm region, a region that coincides with an increase in
negative correlation visible inFigure 3. Similarly, the untreated
data also have a minimum SEC of 5.0 at 1400 nm. In addition,
the combing data pretreatment shows a second low SEC value
in the 1700-1900 nm region. This phenomenon could help
explain the importance of synergic wavelengths in model
development.

The SEP of the models using the testing set is shown in
Figure 5. The SEP of the 64-point combing data pretreatment
shows a similar trend to that seen inFigure 4. Overall, the
model’s performance, in terms of SEP, is higher than any other
pretreatment with the exception of the models generated using
wavelength ranges from 400 to 1300/1500 and even 1800/1900.
The second derivative data give a lower SEP in the 400-1200
data range than the first derivative data but perform worse than
the first derivative in the models that include the 2000-2500
wavelength data.

Table 3 shows the best model performance in terms of SEC,
SEP, and coefficient of determination for each data pretreatment
in addition to the untreated data. Utilizing the full spectral
wavelength data, i.e., 400-2500 nm, the 5-point first derivative

data give the best model performance in terms of SEC (5.64),
SEP (5.64), and the number of factors (3) used in the model.
Even though the untreated data generate a lower SEC, a higher
number of factors are required, and there is a slight increase in
the SEP. Therefore, the true adulteration of a sample, using a
5-point second derivative data pretreatment, would be predicted
to be within(5.64%.

The best model for the sequential spectral approach, however,
is generated by using the second derivative on the 400-1700
data range, not only in terms of SEC and SEP but also in terms
of a number of factors (Table 3). The first derivative data did
not have a better model performance using a sequential approach
so the best SEC and SEP were generated using the full spectrum.
This exception aside, models using a partitioned spectrum
generated lower SECs and SEPs than those using the full
spectrum. Two of the models, i.e., untreated and 64-point
combing, gave the optimal performance when including data
contained in the 1300-1400 range, whereas the 5-point second
derivative gave the optimal performance when including data
in the 1600-1700 range. This phenomenon suggests that there
are synergistic wavelengths in these regions that, when sequen-
tially combined with predictive wavelengths, enhance the
model’s ability to predict species authenticity and adulteration.
Even though the untreated data and the 64-point combing data
pretreatment generated a lower SEP (5.02 and 4.90, respec-
tively), the 5-point second derivative data are preferred because
they generated a lower SEC (4.91) by using fewer PCs in order
to achieve a similar SEP (5.17).Figure 6 shows the actual vs
predicted adulteration content of the model developed using the
5-point second derivative data. The slope, offset, correlation,

Table 3. Model Performance for Full and Partitioned Spectrum Wavelength Data for Each Data Pretreatment at Optimal Convolution Intervalsa

full spectrum partitioned spectrum

data pretreatment data range PCs SEC(r2) SEP(r2) data range PCs SEC(r2) SEP(r2)

none 400−2500 6 5.43 (0.985) 5.88 (0.983) 400−1400 5 5.26 (0.986) 5.02 (0.988)
first derivative 400−2500 3 5.64 (0.984) 5.64 (0.984)
second derivative 400−2500 4 6.63 (0.978) 7.16 (0.975) 400−1700 3 4.91 (0.988) 5.17 (0.987)
64-point combing 400−2500 5 5.64 (0.984) 6.94 (0.979) 400−1400 6 5.07 (0.987) 4.90 (0.988)

a The best models are in bold.

Figure 6. Actual vs predicted adulteration content of PLS using a 5-point second derivative data. Validation samples are shown with an asterisk (*).
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and bias are 0.976, 1.182, 0.988, and-1.04e-06, respectively,
for the calibration set and 0.985,-0.199, 0.987, and-0.970,
respectively, for the validation set.

PCA Analyses. PCA analyses were done to graphically
determine grouping patterns in an effort to classify samples
according to adulteration percentage.Figure 7 shows the graph
of the first two components of the first derivative data using
the full spectrum. The explained variances in the first and second
PC are 22 and 62%, respectively. On the basis of just two
components, a visual relationship among the samples can be
gathered. The PCA plot shows a trend from samples of authentic
Atlantic blue crabmeat (left) to samples of authentic blue
swimmer crabmeat (right). This horizontal trend indicates that

the first component contains information that pertains to species
authenticity and adulteration percentage. As the percentage of
blue swimmer increases, the samples are plotted toward the right
side of the graph.

Figure 8 is the PCA plot of the second derivative data of
the sequential spectrum approach, which shows a similar trend
to that seen inFigure 7. The explained variances for the first
and second PC are 38 and 34%, respectively. On the basis of
both the model performance, in terms of SEC, SEP, associated
coefficients of determination, and reduced complexity, in
addition to the PCA plots, the best model to detect species
authenticity uses the sequential spectrum approach (PLS for

Figure 7. PCA plot of the first two PCs of the first derivative data using the full spectrum. Explained variations in PC1 and PC2 were 22 and 62%,
respectively. Samples were named according to crabmeat species (0, 100% Atlantic blue; 10, 100% Blue swimmer) and adulteration percentage (1−9,
10−90% Blue swimmer). Validation samples are shown with an asterisk (*).

Figure 8. PCA plot of the first two PCs of the second derivative data using a partitioned spectrum (400−1700 nm). Explained variations in PC1 and PC2
were 38 and 35%, respectively. Samples were named according to crabmeat species (0, 100% Atlantic blue; 10, 100% Blue swimmer) and adulteration
percentage (1−9, 10−90% Blue swimmer). Validation samples are shown with an asterisk (*).

Species Authenticity and Adulteration of Crabmeat J. Agric. Food Chem., Vol. 55, No. 3, 2007 591



spectral data in the 400-1700 nm wavelength range) and a
5-point second derivative as a data pretreatment.

In conclusion, adulteration, especially species substitution,
of high-quality and high-priced food products, such as crabmeat,
is an existing problem in the seafood industry. Seafood
processing, which often removes morphological properties that
enable consumers to distinguish one species from another, makes
it easier for species substitution to occur. Results from this study
encompass the possibility of using Vis/NIR spectroscopy to
detect species authenticity and EA of crabmeat. The 30-point
first derivative data generated the lowest error for the full
spectral approach (SEC) 5.64 and SEP) 5.64) of the different
parameters investigated for spectral data pretreatments. A
problem in determining species authenticity using Vis/NIR
spectroscopy, however, is the large number of data points per
spectrum. Even though multivariate analyses, such as PC
analysis, are used to reduce the dimensionality, it is important
to distinguish the wavelength regions and features that contain
relevant information from the ones that do not, thereby reducing
sources of noise and creating more robust regression models.
Utilizing a sequential approach, a data set containing the 400-
1700 nm spectral range with a 5-point second derivative data
generated the best model to determine species authenticity and
adulteration (SEC) 4.91 and SEP) 5.17). Regardless of the
type of approach to analyze the spectral data, i.e., full or
sequential, used in generating the model, results from this study
indicate that it is possible to detect species authenticity and
adulteration with less than(6% error.
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